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ABSTRACT11

We present a Python tool to generate a standard dataset from solar images that allows for user-defined selection criteria
and a range of pre-processing steps. Our Python tool works with all image products from both the Solar and Heliospheric
Observatory (SoHO) and Solar Dynamics Observatory (SDO) missions. We discuss a dataset produced from the SoHO
mission’s multi-spectral images which is free of missing or corrupt data as well as planetary transits in coronagraph images, and
is temporally synced making it ready for input to a machine learning system. Machine-learning-ready images are a valuable
resource for the community because they can be used, for example, for forecasting space weather parameters. We illustrate
the use of this data with a 3-5 day-ahead forecast of the north-south component of the interplanetary magnetic field (IMF)
observed at Lagrange point one (L1). For this use case, we apply a deep convolutional neural network (CNN) to a subset of the
full SoHO dataset and compare with baseline results from a Gaussian Naive Bayes classifier.

12

1 Background & Summary13

Studies based on physics models have shown that solar magnetic field captured with magnetograms contain crucial information14

for estimating the speed of the solar wind, while the dynamical features of CMEs (angular width, initial speed, etc.) are15

routinely inferred from coronagraph images1, 2. Hence, it is expected that applying machine learning (ML) techniques to16

the high temporal coverage data of both the Solar and Heliospheric Observatory3 (SoHO) mission and the Solar Dynamics17

Observatory4 (SDO) mission is a feasible venture, that can potentially improve the space weather forecasting capability of18

current models5–7. With the quality of input data remaining paramount to the success of these ML-methods8–10 and to ensure19

reproducible scientific research11, 12, the preparation of a community-wide standard dataset with a standard software is crucial.20

At present, SoHO has provided more temporal coverage of the Sun than its successor, NASA’s SDO, and has also fully21

covered Solar Cycle 23 and 24 with a suite of on-board instruments3 including those specific to solar imaging: the Michelson22

Doppler Imager13 (MDI) for the solar photosphere, the Extreme ultraviolet Imaging Telescope14 (EIT) for the stellar atmosphere23

to low corona, and the Large Angle and Spectrometric Coronagraph15 (LASCO) covering the corona from 1.5−30 Rs, detailed24

in Table 1. Recently, a white-light coronal brightness index (CBI), constructed from the full LASCO C2 mission archive,25

was used to explore correlations between the solar corona and several geophysical indices16. Although SDO has even higher26

resolution and cadence, SoHO continues to uniquely provide coronagraph products and serves as a mission critical backup to27

the SDO for solar flare and CME forecasting in the event of SDO failure.28

Stanford University’s Joint Science Operation Center (JSOC) stores data from SoHO MDI, SDO HMI and AIA, and various29

other solar instruments. The SunPy-affiliated package DRMS enables querying of these images17, 18. All of these individual30

image products from JSOC are at the same processing level and are supplied in a Flexible Image Transport System (FITS)31

format that contains only scalar values. The NASA Solar Data Analysis Center’s (SDAC) Virtual Solar Observatory19 (VSO)32

tool enables data queries from a number of individual data providers. SDAC’s terabytes of available EIT and LASCO images33

are also in FITS format. However, the SDAC data is highly heterogeneous. Not only are there intrinsic differences among34

these SoHO products (e.g., individual cadence as shown in Table 1), but there is also an irregular assortment of image file35

sizes and processing levels. These varying file sizes can correspond to different image resolutions, calibrations and orbital36

maneuvers, and multi-frame recordings. In addition, all four of the publicly available EIT products require calibration to37
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(a) MDI (b) EIT 195

(c) LASCO C2 (d) LASCO C3

(e) Mercury Transit in LASCO C2 (f) Mercury Transit in LASCO C3

Figure 1. Examples of missing pixel data in the various SoHO products (a-d) as well as planetary transits in the LASCO
coronagraphs (e-f). Telemetry errors take the form of large missing portions of the field of view, single or multiple image
‘holes’, and ‘stripes’. Colors similar to those used on the NASA SoHO site have been used.
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Instrument Detector Observation Observed Region λ (Å) Cadence (min) Date Range
MDI MDI LOS Mag. Fld. Full Disk 6768 (Ni I) ∼ 96 1996.05.01 - 2011.04.12
EIT EIT Intensity Full Disk 171 (Fe IX/X) ∼ 360 1996.01.01→
EIT EIT Intensity Full Disk 195 (Fe XII) ∼ 12 1996.01.01→
EIT EIT Intensity Full Disk 284 (Fe XV) ∼ 360 1996.01.01→
EIT EIT Intensity Full Disk 304 (He II) ∼ 360 1996.01.01→
LASCO C2 Intensity Corona (1.5−6 Rs) Visible ∼ 20 1995.12.08→
LASCO C3 Intensity Corona (3.5−30 Rs) Visible ∼ 20 1995.12.08→

Table 1. Suite of SoHO Instruments utilized. LOS Mag. Fld. denotes the line-of-sight magnetic field, λ (Å) is wavelength
measured in angstroms, and Rs is the Sun’s radius. LASCO C1 (1.1−3 Rs) is not included in this work since it was only
operational till Aug. 9, 2000.

account for instrument degradation and the presence of the burn-in caused by continuous exposure to the sun. SunPy’s18, 20
38

Federated Internet Data Obtainer (Fido) interface with the VSO helps to reduce the search space by enabling a query based on a39

priori knowledge of the appropriate file sizes but is currently limited in its time sampling capabilities. In addition, a few percent40

of the total data for each of these mission products contains artefacts, illustrated in Fig. 1 (a-d). Besides holes, bright lines41

caused by comet transits, speckle patterns arising from cosmic rays impinging on the cameras, and spurious image artefacts, all42

contaminate the two coronagraphs’ field of view. However, the dominant contribution, by far, to image contamination comes43

from the regularity of planetary transits that all leave a bright horizontal signature on the LASCO image products, an example44

of which is shown in Fig. 1 (e-f). Hence, preparing an ML-ready dataset from solar images, that is a dataset that can be ingested45

by a machine learning algorithm, remains challenging, time-consuming, and error-prone.46

In the event that a sufficiently complex machine learning algorithm would be able to extract sufficient information from the47

images, either to improve the state-of-the-art forecasting, or to deepen our understanding of the underlying physical processes,48

this would constitute an invaluable resource for the community. On the other hand, a null result would also be an important step49

that would highlight the present limitations of solar images for space weather prediction.50

2 Methods51

In this section we provide an overview of the two-step process to the Python tool (https://github.com/cshneider/52

soho-ml-data-ready) for producing a machine-learning-ready community standard dataset from solar images.53

2.1 Data preparation54

The data preparation pipeline starts with a data generation step. This is illustrated in the leftmost flowchart of Fig. 2.55

Step 1 (data generation):56

1. User inputs:57

• The user selects the SoHO or SDO mission followed by a set of mission products,58

• Appropriate mission start and end dates are required,59

• A user-defined time window specifies the time sampling rate of the data in hours,60

• In order to be able to fit all of the data on a several GB GPU to speed up machine learning experiments, it is61

necessary to down-sample the native resolution of the images (i.e., (1024 x 1024) pixels for SoHO and (4096 x62

4096) pixels for SDO) to a user-defined output image size. Since the information content of the magnetogram,63

EUV/UV/Visible, and coronagraph data products is fundamentally different, four different resize strategies are64

provided per code execution. For instance, one can perform three separate code runs with min-pooling on MDI,65

max-pooling on EIT, and sub-sampling for LASCO. In the event that the user wants to retain SoHO products that66

contain missing data that meets an acceptable threshold, an interpolation option is also provided for down-sampling.67

The definitions of these operations are as follows: i. sub-sampling selects pixels in every image row and column68

that are separated by a step size given by a scale factor. This scale factor is equal to the ratio of the original image’s69

axis length to the desired image output size (e.g., 1024/128). ii. the interpolation option is a linear interpolation70

that shrinks the image by the scale factor, has spatial anti-aliasing which minimizes distortion artefacts known as71

aliasing that occur when a high-resolution image is represented at a lower resolution, and preserves the original72

3/15

https://github.com/cshneider/soho-ml-data-ready
https://github.com/cshneider/soho-ml-data-ready
https://github.com/cshneider/soho-ml-data-ready


Figure 2. The two flowcharts describe the two main steps of the standard dataset preparation pipeline: data generation and
data synchronization. The following color scheme is used: light green denotes software options provided for the user, light blue
is for the executing program, turquoise is for key main actions, gray is for external data, yellow is for flowing data, white is for
a decision, and orange is for output data products.

range of values in the output image. iii-iv. min-pooling and max-pooling both use the block-reduce function73

from Scikit-image21 to tile the image in blocks of size (scale factor) x (scale factor) and compute the minimum or74

maximum on each such block,75

• FITS headers are down-sampled using the FITS convention with compliant SunPy keywords corresponding to the76

4/15



down-sampling of the respective image products,77

• An option of including the updated FITS metadata with compliant SunPy keywords for JSOC products is also78

provided but it adds to the processing time as the server needs to first prepare the requested files,79

• As an alternative to using raw, uncalibrated LASCO Level-0.5 data, the option of using Level-1.0 LASCO images80

is provided. LASCO Level-1.0 data products have the following corrections applied: i. corrections for bias,81

and calibration to units of mean solar brightness, ii. correction to account for vignetting, particularly around82

the occulting disk and pylon, iii. warping image to yield flat geometry for entire field of view, iv. up to several83

minutes clock correction, v. updates to metadata parameters such as the Sun-center location and exposure time.84

Furthermore, since 2003, the SOHO spacecraft performs 180-degree flips approximately every three months to85

account for an antenna issue; the Level-1.0 data product provides precise corrections for these roll periods in the86

metadata, though does not rectify images. In our opinion, these corrections are not needed for input to an ML87

system for three reasons: a. image flipping is generally an invariant operation for an ML system and is used for88

image augmentation to generate more examples for ML systems; b. image warping may interfere with the integrity89

of the raw data; and c. using the LASCO Level-1.0 data in calibrated physical units provides no advantage over the90

raw Level-0.5 data which has units of photon counts (DN). In regard to calibrated EIT images, it is anticipated that91

Level-1.0 EIT images will become publicly available for querying via an online interface hosted by ESA later this92

year,93

• For use of the DRMS system, JSOC requires that the user preregister their email address at http://jsoc.94

stanford.edu/ajax/register_email.html.95

2. Databases and queries:96

• With the user selection of SoHO MDI or SDO mission products, Stanford’s JSOC database is queried using DRMS97

export rather then DRMS query which also lists ‘ghost’ files that are of size zero. The following JSOC series are98

used: i. mdi.fd_M_96m_lev182 for SoHO MDI at a natural cadence of 96 minutes, ii. hmi.M_720s for99

SDO HMI at a natural cadence of every 720 seconds, iii. aia.lev1_euv_12s for SDO EUV AIA (94, 131,100

171, 193, 211, 304, 335 Å) at a natural cadence of every 12 seconds, iv. aia.lev1_uv_24s for SDO UV AIA101

(1600 and 1700 Å) at a natural cadence of 24 seconds, v. aia.lev1_vis_1h for SDO visible AIA (4500 Å)102

at a natural cadence of 1 hour. For SDO AIA, both ‘images’ and ‘spikes’ (for calibration) are available and so103

‘images’ are explicitly specified. DRMS download is used to retrieve the DRMS exported data,104

• With the user selection of SoHO EIT, SoHo LASCO C2, and/or LASCO C3, SunPy’s Fido is used to query the105

NASA VSO SDAC database. GNU’s Wget22 is used to fetch the images since it avoids timing out on large datasets,106

• An internal step size of 60 days is used to produce the initial queries for all SoHO mission and SDO mission107

products and it respects SDAC’s 10k results quota per search as well as DRMS’ 100 GB export limit.108

3. Reduction of data search space:109

• The key difference between the two query tracks in terms of metadata sieving is that JSOC products need only to110

be sieved on time (i.e., user-defined time sampling rate or cadence) whereas SDAC products need to be sieved111

on time and on file size. Sieving is performed by computing a dynamic set of indices which is updated each112

time that a candidate file, that has been locally downloaded, is found to have missing data or to have the wrong113

shape or to have planetary transits in the case of LASCO products. The actual download proceeds from singleton114

download requests which are sequentially issued based on these indices. Selecting the proper sized file sizes from115

the database, a priori, offers a major performance advantage over having to locally download and individually116

examine FITS headers. Local downloading of files is consequently held off until the cleaning step of the pipeline117

which utilizes Astropy23, 24 to access the FITS data and FITS keywords,118

• The planet transit filter works by applying the Probabilistic Hough Transform on an edge-filtered image, obtained119

from using the Canny algorithm, to specifically detect only horizontal lines. Scikit-image is used for both120

algorithms,121

• Native SoHO image data corresponds to a resolution of (1024 x 1024) pixels with the exception of EIT 195 which122

is also frequently available in (512 x 512) pixel resolution. These product resolutions correspond to specific file123
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sizes as shown in Table 2. In order to efficiently reduce the VSO query size for these proper data from the very124

beginning, SunPy’s Fido ‘search’ function is used to return a ‘QueryResponseBlock’ dictionary object which125

contains the keyword ‘size’ in addition to other keywords corresponding to columns 1-5 and 7 of Table 1 as well126

as the ‘fileid’ url pointer for file download. In just a handful of cases, the file size on its own is not sufficient to127

guarantee the proper data type which necessitates ‘naxis=2’ in the FITS header to be true in order to have a 2D128

image as opposed to a 3D data cube.129

4. Mission product FITS with data and metadata cubes and corresponding times:130

• In the event of an unlikely interruption in downloading which crashes the program, the user can restart on the last131

FITS file date downloaded,132

• FITS files are first generated from all data satisfying user specifications,133

• The data from these FITS files is then aggregated and delivered in compressed Hierarchical Data Format version134

525, 26 (HDF5) data cubes per data product specified. Accompanying each of these data cubes are comma-separated135

values (CSV) files containing the time axis points of the respective data cube. These data cubes are now ready for136

input to the second step of the software pipeline which is data synchronization.137

A major problem in using solar images for machine learning is that, as shown in Table 1, each image comes with its own138

time cadence. In our Python tool, the user-defined time sampling rate fixes the cadence of all products to the same rate and139

syncing makes the user-selected set of SoHO products all fall within the same time window. This is illustrated in the rightmost140

flowchart in Fig. 2. This operation further reduces the volume of data to a more manageable temporal resolution.141

Step 2 (time synchronization):142

1. User inputs143

• The user selects the mission entered in Step 1 together with all or a subset of the mission products and all or a144

subset of the date range, as well as the same or coarser time sampling rate sub-sampled by an integer multiple.145

The user also has the choice of combining images of the same output dimension but obtained with different resize146

strategies across the different products,147

• The user is presented with two options: i. if the user has simply downloaded the HDF5 cubes and CSV files without148

locally generating them, then the data from the HDF5 cubes will be taken up along with the corresponding times149

from the accompanying CSV file for each product specified, ii. if the user has run the Python tool and obtained150

both the HDF5 data cubes along with the corresponding FITS files then the FITS files will be used to obtain both151

the data and the times since the time stamps are written into the names of the FITS files themselves, In the case of152

FITS files being present, the times are directly read from the names of the FITS files because this is more robust153

against any interruption in the data generation step,154

• The sync algorithm then finds the product with the shortest time list and moves along its time axis checking for155

overlap with the times of the other products. The overlap time is defined as +/- half the time window. The closest156

times from all products to that time are taken and if equal times are found for a product then the first such time157

is always selected. If a matching time for a product for a particular point on the time axis is not found, all other158

product times obtained for that time axis point are discarded. Therefore, it follows that the more products specified,159

the harder it is for a time axis point to be shared among all the products,160

• The outputs are synced HDF5 cubes in a numeric format suitable for efficient GPU utilization and corresponding161

synced times per product as CSV files,162

• If a LASCO product is present, the F-corona is subtracted by taking the time difference between the given LASCO163

image with itself up to 24 hours earlier. This results in a reduced LASCO image set which is then synced with the164

rest of the selected products,165

• This new reduced set is then output as the second set of HDF5 and CSV files.166

Cleaning and processing from the first step and syncing from the second step together yield a machine-learning-ready167

standardized dataset.168
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SoHO product File size (KB) Resolution (pixels) Calibration level Provider
MDI ∼ 1400-1600 (1024 x 1024) L1.8.2 JSOC
MDI 4115 (1024 x 1024) L1.5, L1.8.2 Removed from SDAC
EIT 171 2059 (1024 x 1024) L0.5 SDAC
EIT 195 2059 or 523 (1024 x 1024) or (512 x 512) L0.5 SDAC
EIT 284 2059 (1024 x 1024) L0.5 SDAC
EIT 304 2059 (1024 x 1024) L0.5 SDAC
LASCO C2 ∼ 2100, 4106 (1024 x 1024) L0.5, L1.0 SDAC
LASCO C3 ∼ 2100, 4106 (1024 x 1024) L0.5, L1.0 SDAC

Table 2. Proper file sizes identified for all available calibration levels of SoHO products from the SDAC and JSOC data
providers with their respective resolutions. LASCO file sizes are given as approximate due to some minor size variations noted
over the years. File size is not relevant for calibrated MDI images obtained from JSOC. It is anticipated that Level-1.0 EIT
images will become publicly available for querying via an online interface hosted by ESA later this year.

SoHO product No. FITS files HDF5 cube size (MB) No. excluded files with holes (& planetary transits)
MDI 15456 561 66
EIT 171 10234 187 1045
EIT 195 14439 254 1391
EIT 284 9601 151 895
EIT 304 9439 158 936
LASCO C2 15383 329 489 (& 7511)
LASCO C3 13354 277 699 (& 23901)

Table 3. Individual SoHO products queried at a cadence of 6 hours and time span of Jan. 1, 1999 - Dec. 31, 2010. Image
output dimensions are (128 x 128) pixels. The number of images that have been excluded per image product due to holes and,
in the case of LASCO, planetary transits is also provided.

3 Data Records169

The input data and provenance corresponding to the suite of SoHO instruments described in Table 1 is provided by Table 2. The170

datasets analysed during the current study, consisting of data plus metadata serialized with JSON, are available as compressed171

HDF5 data cubes through SURF at (https://surfdrive.surf.nl/files/index.php/s/NYHm1b9hOKMMcw0)172

and are all contained in the “Mission_ML_Pipeline” directory.173

The HDF5 data cubes come with corresponding time stamps per image slice provided by the accompanying CSV files.174

Time stamps are provided as a separate CSV file primarily because a CSV file provides ease-of-access for a beginning user and175

enables to quickly determine the corresponding number of images in the respective data cube. Each slice of the data cube has176

one fixed, user-specified output image size which, in this case, is (128 x 128) pixels obtained from the sub-sampling resize177

strategy. An image output size of (128 x 128) pixels is used for all image products in this paper because all of the data for a178

given experiment can be efficiently loaded into GPU memory. The original size of the images is (1024 x 1024) pixels with the179

exception of EIT 195 which also comes in (512 x 512) sizes.180

The first set of data cubes encompass all seven SoHO products as shown in Table 3 and has a temporal cadence of six hours181

and time span of Jan. 1, 1999 - Dec. 31, 2010. The second set of data cubes are the five synced experiments with the same time182

span and temporal cadence of six hours and separately comprised of one, three, and seven image products as shown in Table 4.183

Within the three and seven product experiments, the effect of both including and subtracting the F-corona from the LASCO184

products is investigated. Explicitly, the experiments are: i. MDI-only, ii-iii. MDI, EIT 195, LASCO C2 (minus F-corona), iv-v.185

all seven SoHO products (minus F-corona). With more products there is a higher probability that some of them are unavailable186

at the specified times, so that fewer synced times are available.187

The sub-directories consist of HDF5 data cubes along with their respective CSV files containing all of the time stamps and188

are as follows:189

• “19990101_20101231_6_128_7_products” are the generated data cubes for all seven products individually,190

• “19990101_20101231_6_128_MDI_self_synced” is the self synced MDI data cube,191

• “19990101_20101231_6_128_3_products_synced” are the synced data cubes corresponding to MDI, EIT 195, and192
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SoHO experiment Total sync output Train Validation Test Total sync used
MDI only 15455 9090 1269 1227 11586
MDI, EIT 195, LASCO C2 12299 7384 953 943 9280
MDI, EIT 195, LASCO C24 12132 7292 940 926 9158
MDI, EIT 171, 195, 284, 304, LASCO C2, C3 4348 2369 275 347 2991
MDI, EIT 171, 195, 284, 304, LASCO C24, C34 3360 1833 195 268 2296

Table 4. Five SoHO experiments selected to be synced with a cadence of 6 hours and time span of Jan. 1, 1999 to
Dec. 31, 2010. The total synced output comes from the second step of the pipeline. For the three product and seven product
experiments, the subtraction of the F-corona by time differences of up to 24 hours prior to a LASCO image and itself are used
and represented by ‘4’ after C2,C3. The train, validation, and test data split is formed by applying a progressive rolling indices
scheme by successive year. Image dimensions are the same as reported in Table 3. Note that due to the synchronization step the
MDI-only experiment contains one less file than in Table 3.

LASCO C2. A further sub-directory “Fcorona_subtracted_3products” contains the corresponding F-corona subtracted193

products,194

• “19990101_20101231_6_128_7_products_synced” are the synced data cubes of all seven SoHO products. A further195

sub-directory “Fcorona_subtracted_7products” contains the corresponding F-corona subtracted products.196

These datasets were derived from the following public domain resources: VSO (https://sdac.virtualsolar.197

org/cgi/search) and JSOC (http://jsoc.stanford.edu/MDI/MDI_Magnetograms.html). The example198

datasets are 6.6 GB in total.199

4 Technical Validation200

Having a standardized dataset facilitates data exploration including, for example, studies of correlation between different201

channels. Figure 3 shows a comparison of mean intensity variation across all synced SoHO products from 1999 - 2010.202

The long-term variation in the mean value of the intensity of the solar disk for EIT extreme ultraviolet (EUV) images at203

wavelengths of 171, 195, 284, 304 Å show an interesting downward trend corresponding to the CCD degradation over time.204

Also in this trend are regular clean-up operations which involve reheating the detector to account for the burn-in from the sun205

which leave ‘break-like’ signatures in the spectrum. The wiggles on the spectrum have a periodicity of roughly 27 days and206

correspond to active regions. Less readily visible is the growth of mean intensity with increasing solar cycle 23. One of the207

most interesting peaks seen in all the EUV channels occurs on October 27, 2003 corresponding to the Halloween storm of208

200327, 28 a combination of the bright active regions and the excessive particle events that ‘blinded’ the camera repeatedly over209

those few days. The long term variation of the LASCO C2 and LASCO C3 both show a periodic variation in the mean intensity.210

The cyclical broadening of the peak is the puffing up of the F-corona every half year due to the apparent size of the sun getting211

larger than the fixed occulter and then getting smaller again. This cyclical variation with the Sun–SoHO distance was also212

found in previous studies29. The overall amplitude in the LASCO images follows the solar cycle and the tiny wiggles, as for213

the EIT images, correspond to Carrington rotations and harmonics thereof. The peaks in the mean intensity of the images for214

LASCO C2 and LASCO C3 are partly attributed to observational artefacts and to CMEs in LASCO field of view. The signature215

of the aforementioned Halloween storm is also visible in the mean value of the LASCO images. The maximum of the absolute216

values of the magnetic field measurements by MDI best represents the solar cycle; getting weaker approaching the minimum of217

solar cycle 23 in the later part of 2008 and rising up again, marking the beginning of solar cycle 24. A visual comparison can218

be seen between the observations of the MDI measurements with the monthly averaged sunspot number (SSN), marking the219

maxima and the declining phase of the solar cycle 23 and beginning of the solar cycle 24. The gaps in the data products are due220

to the prepossessing step where the planetary transits are filtered out from the entire dataset.221

Accompanying the SoHO product temporal profiles, dips in the north-south component of the interplanetary magnetic field222

(IMF) Bz(t), as measured at Lagrange point one (L1), signify the geomagnetic storms. The stark difference in the geomagnetic223

activity at different phases of the solar cycle can be clearly seen. The dips are numerous during the maximum of the solar cycle224

23. In contrast, the rising phase of the solar cycle does not show significant dips in the Bz measurements at L1. As seen from225

Figure 3, pre-processing of the data is clearly non-trivial and additional steps downstream of our pipeline would be needed to226

account for instrument degradation and trends in the data that are entangled with solar cycle variability.227
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Figure 3. Long term variation (1999 - 2010) of the synced products. Shown are the LASCO images with F-corona subtracted
for mean intensity of the solar disc for EIT EUV (blue, red, orange and green curves) in log scale, LASCO white-light (brown
and purple curves) in log scale, maximum of absolute value of MDI magnetogram (light blue curve) and Bz values at L1 (gray
curves). The light pink and blue backgrounds indicate the data time overlap with solar cycles 23 and 24. The solar cycle is also
evident in the bottom plot with the monthly averaged sunspot number (SSN) for the duration of the dataset. The vertical
olive-green lines corresponds to large geomagnetic storms with Dst indices smaller than -100.

5 Usage Notes228

Along with the dataset, we provide and discuss results for a simple machine learning model that predicts the onset of a229

geomagnetic storm. This is intended as a baseline model that can be used in future studies to assess the skill of more complex230

models.231

5.1 Example application of SoHO dataset to space weather use case232

SoHO is a cooperative mission between NASA and ESA and was the first space-based telescope to serve as an early warning233

system for space weather. SoHO was launched on December 2, 1995 and remains operative after 25 years of service. It has234

revolutionized space weather forecasting capabilities by providing several days notice of Earth-directed disturbances such as235

Coronal Mass Ejections (CMEs). Space weather refers to conditions on the sun, in the solar wind, magnetosphere, ionosphere,236

and thermosphere, that can influence the performance and reliability of space-borne and ground-based technological systems237

and can endanger human life or health30.238

In this section we discuss an example application of the dataset to a challenging space weather problem, namely the forecast239

of Bz at L1, in a two-day time window which spans 3−5 days ahead of the image data. This is physically justified since the240

mean bulk speed31 of CMEs is 400 km/s which yields an average propagation time from Sun to Earth of around three days.241

Even the slow solar wind from the equatorial regions of the Sun has a mean speed32 of 400 km/s. It is known that that coronal242

brightness alone has no relationship with Bz, as recently re-affirmed using two full solar cycles of LASCO C2 data16.243

We note that the images contain the full solar disk, so information about events affecting Bz might be present before and after244

an image that is assigned a positive event truth label. This can lead to a solar image with an active region toward the left solar245

limb being labeled a negative event since its effect has not yet arrived at L1. In order to simplify the problem, the prediction of246

Bz is treated as a binary classification problem, with the target being defined as the difference between the minimum of Bz247

and the mean of Bz in each two-day window. Values of Bz are obtained from the NASA OMNI low resolution (LRO) dataset248

(https://spdf.gsfc.nasa.gov/pub/data/omni/low_res_omni) which provides hourly averaged values. The249

mean is subtracted in order to have some variation around the minimum value of Bz encountered during geomagnetic250

disturbances since these values tend to dominate the two-day window. The data is selected to span the years 1999 to 2010251

inclusive. This is because the intrinsic image quality from 1996 - 1998 is not too reliable.252

Five experiments are performed using the following image products: i. MDI-only, ii-iii. MDI, EIT 195, LASCO C2 (minus253

F-corona), iv-v. all seven SoHO products (minus F-corona). For each experiment the datasets are synced. In order to prevent254

temporal correlation between the training, validation and test sets, a rolling split was applied to the data. For 1999, Feb.- Aug.255

is used for the training set, Oct. for the validation set, and Nov. for the test set. For each subsequent year, all three of these set256

partitions are advanced by one month forward so that for 2010, as an example, it is Jan.-July for training, Sept. for validation,257
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Product used for Gaussian Naive Bayes (GNB) % TP FP FN TN TSS MCC
MDI (max, min, std) 25 212 336 85 594 0.35 0.30
MDI (min, std, frac) 20 171 392 67 597 0.32 0.26
MDI (min, std, frac) 15 141 392 50 644 0.36 0.26
MDI (min, std, frac) 10 110 400 36 681 0.38 0.25
MDI (min, std, frac) 5 35 459 5 728 0.49 0.18
MDI (std), EIT 195 (frac), LASCO C2 (0) 25 153 252 67 471 0.35 0.30
MDI (min), EIT 195 (0), LASCO C2 (0) 20 131 338 45 429 0.30 0.24
MDI (std), EIT 195 (frac), LASCO C2 (0) 15 96 273 47 527 0.33 0.24
MDI (std), EIT 195 (frac), LASCO C2 (0) 10 77 298 36 532 0.32 0.21
MDI (std), EIT 195 (min), LASCO C2 (frac) 5 32 441 2 468 0.46 0.17
MDI (frac), EIT 195 (mean), LASCO C24 (frac) 25 159 378 53 336 0.22 0.19
MDI (frac), EIT 195 (std), LASCO C24 (frac) 20 119 333 51 423 0.26 0.20
MDI (frac), EIT 195 (mean), LASCO C24 (frac) 15 117 448 22 339 0.27 0.20
MDI (frac), EIT 195 (mean), LASCO C24 (frac) 10 92 418 17 399 0.33 0.22
MDI (frac), EIT 195 (std), LASCO C24 (frac) 5 30 401 3 492 0.46 0.17
MDI (std), 195 (0), 171 (max), 284 (std), 304 (std), C2 (max), C3 (min) 25 57 72 29 189 0.39 0.35
MDI (frac), 195 (mean), 171 (std), 284 (std), 304 (max), C2 (max), C3 (std) 20 39 66 23 219 0.40 0.33
MDI (min), 195 (mean), 171 (max), 284 (max), 304 (std), C2 (max), C3 (frac) 15 38 101 10 198 0.45 0.32
MDI (frac), 195 (mean), 171 (std), 284 (std), 304 (std), C2 (max), C3 (0) 10 27 63 12 245 0.49 0.35
MDI (frac), 195 (0), 171 (max), 284 (min), 304 (std), C2 (max), C3 (mean) 5 9 45 2 291 0.68 0.33
MDI (frac), 195 (std), 171 (max), 284 (min), 304 (std), C24 (mean), C34 (mean) 25 26 14 39 189 0.33 0.40
MDI (max), 195 (mean), 171 (min), 284 (0), 304 (std), C24 (max), C34 (frac) 20 33 91 13 131 0.31 0.23
MDI (max), 195 (mean), 171 (max), 284 (mean), 304 (std), C24 (std), C34 (0) 15 28 74 8 158 0.46 0.32
MDI (max), 195 (std), 171 (0), 284 (mean), 304 (std), C24 (min), C34 (min) 10 25 84 4 155 0.51 0.32
MDI (max), 195 (frac), 171 (min), 284 (mean), 304 (max), C24 (min), C34 (mean) 5 8 28 1 231 0.78 0.41
Product used for Convolutional Neural Network (CNN) % TP FP FN TN TSS MCC
MDI only 25 15 13 282 917 0.04 0.10
MDI, EIT 195, LASCO C2 25 29 25 191 698 0.10 0.18
MDI, EIT 195, LASCO C24 25 53 145 159 569 0.05 0.05
MDI, EIT 195, EIT 171, EIT 284, EIT 304, LASCO C2, LASCO C3 25 27 20 59 241 0.30 0.24
MDI, EIT 195, EIT 171, EIT 284, EIT 304, LASCO C24, LASCO C34 25 20 26 45 177 0.18 0.20

Table 5. Results from the five SoHO experiments obtained for two categories of models for binary classification: Gaussian
Naive Bayes (GNB) (first five cells) and from a three-layer convolutional neural network (CNN) (final cell). Each model is
evaluated at a percentile (25,20,15,10,5)% of Bz values from the MDI-only training set. These percentiles correspond to Bz
values of -6.28, -6.95, -7.76, -8.92, and -11.61 nT, respectively. The best performing CNN models for each of the five
experiments are shown. The ‘4’ denotes F-corona subtraction obtained by taking the time difference between the given
LASCO image with itself up to 24 hours earlier. For the GNB category, the best performing models are shown with their
corresponding features per SoHO product: ‘max’ is the maximum, ‘min’ is the minimum, ‘mean’ is the mean, ‘std’ is the
standard deviation, ‘frac.’ is the Minkowski–Bouligand fractal dimension, and ‘0’ denotes feature absence. Per model, the True
Skill Score (TSS), at 50%, and Matthews Correlation Coefficient (MCC) are given with corresponding true positives (TP), false
positives (FP), false negatives (FN), and true negatives (TN).

and Oct. for the test set. The other months are not used. The final datasets for each experiment are given in Table 4 and258

approximately yield an 80-10-10 split for the training, validation, and test sets. Each of the experiments’ test sets is normalized259

by the maximum of the absolute value of the respective training sets. The corresponding truth labels for each experiment are260

further assigned a binary value determined by setting the threshold p at five percentiles (25,20,15,10,5)% corresponding to Bz261

values of -6.28, -6.95, -7.76, -8.92, and -11.61 nT, respectively. This causes a class imbalance at each threshold which requires262

the use of class weights for training both the CNN and GNB models to perform binary classification.263

5.1.1 Machine learning approach264

We apply a three-layer CNN, implemented with TensorFlow33, to each of the five experiments. The SoHO products used in265

each of these experiments constitute the input channels. These channels are input in parallel with their individual dense or266

fully connected layers eventually concatenated as depicted in Fig. 4. Due to the application of a down-sampling strategy on267
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the images, the full data cubes can fit into a several GB GPU memory with the final down-sampled sizes constrained by how268

many image products will be run in parallel. In our case, sub-sampling to (128 x 128) pixels fits into the GPU for all five269

experiments. This parallel approach is chosen over the traditional, stacking approach, in that the integrity of the individual270

product’s features may be preserved instead of merging features across different products which will confound the individual271

product’s contribution. Three successive block iterations consisting of max-pooling, convolution, batch normalization and a272

rectified linear unit (ReLU) activation are applied on each parallel network. After the above mentioned concatenation, two273

successive blocks of linear activation and dropout, which acts as a regularizing term to prevent over-fitting, are applied. The274

final single activation unit is given by the sigmoid function which assigns binary values to the preceding probabilities. A binary275

cross entropy loss function is used together with a stochastic gradient descent (SGD) optimizer. A convergence is achieved276

within 100 epochs with early stopping enabled triggered by the validation loss. The total number of model parameters is277

∼62K, ∼178K, and ∼409K for the one, three, and seven product experiments, respectively. The network architecture and278

hyper-parameters have not been optimized for predicting Bz in this paper so the results should be interpreted as simple baselines.279

5.1.2 Baseline model, features, and metrics280

The Gaussian Naive Bayes (GNB) classifier is used as a baseline and implemented with Scikit-learn21 in order to compare281

with the deep CNN approach. The Naive Bayes classifier assumes that the value of a particular feature is independent of the282

value of any other feature, ignoring any possible correlations. The advantage of this method is that it only requires a small283

number of training data to estimate the parameters necessary for classification. In our approach, we examine combinations284

of five input features for each of the five experiments. The first four features that are selected to characterize the image pixel285

distribution are the max, min, mean, and standard deviation. The last feature leverages the mathematics of shape, as applied286

to space weather prediction in a related but different topological approach34, to compute the Minkowski–Bouligand (MB)287

fractal dimension or box-counting dimension. The MB fractal dimension takes on values between 1 and 2 for a 2D image. The288

box-counting dimension is computed on sub-sampled SoHO images which are each first transformed into a binary representation289

using the respective means of these images as the discriminator. At each of the experiments’ percentile thresholds, a best-fit290

model is determined. For the single SoHO product experiment, there are 31 distinct feature combinations. For the other two291

multi-product experiments, one feature per product is considered which yields 216 combinations for three products and 279,936292

combinations for all seven products, of which one in ten is sampled. The GNB approach does not utilize a validation set. As293

such, in order to maintain a direct comparison with the CNN results, the validation set is excluded rather than used to make a294

larger training set.295

The predictions from the CNN and GNB are compared using the TSS and MCC scores. TSS is the difference between the296

true and false positive rates and is an unbiased estimator with respect to class imbalance8. MCC is a correlation coefficient297

between the observed and predicted binary classifications and can be used if the classes are of very different sizes. Both298

measures return a value between -1 and +1. Each of the GNB model TSS and MCC scores can be directly compared with the299

same class of CNN models since the number of positives and negatives is fixed for the same products used at a given threshold.300

Expressions for TSS and MCC are given in eqs. 1 and 2 as301

TSS = TPR−FPR =
TP

TP+FN
− FP

FP+TN
, (1)

MCC =
TP×TN−FP×FN√

(TP+FP)× (TP+FN)× (TN+FP)× (TN+FN)
, (2)

where TP, TN, FP, FN denote true-positive/negative and false-positive/negative.302

5.1.3 Results and discussion303

In Table 5, we present baseline results arising from the application of a Gaussian Naive Bayes (GNB) classifier and a deep304

convolutional neural network (CNN) to a binary classification of Bz, which serves as a proxy for the onset of geomagnetic305

disturbances at Earth. The features for the GNB are a set of standard statistical quantities characterizing the image pixel value306

distribution (min, max, mean, standard deviation) with the addition of the Minkowski–Bouligand (MB) fractal dimension35.307

Additionally, there is a ‘dummy’ feature for each product that is set to zero. The selection of this dummy feature in Table 5,308

indicated by a (0), shows that the respective product was not informative.309

The best performing CNN model has a True Skill Statistic (TSS) of 0.30 and and Matthews correlation coefficient (MCC)310

of 0.24 and is obtained for the experiment with all seven SoHO products, with the F-corona left in for the LASCO products,311

evaluated at the 25th percentile of Bz corresponding to −6.28 nT as shown in Table 5. It is interesting that with the F-corona312

subtracted, the model performance drops to a TSS of 0.18 and MCC of 0.20. The difference here is that there are ∼ 700313

fewer synced times available when the F-corona is subtracted as seen from Table 4, which results in 21 fewer true events as314

only 65 true events (TP + FN) remain following F-corona subtraction as opposed to the 86 true events starting out when the315
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Figure 4. The flowchart describes the steps of applying a deep CNN network for classifying the occurrence of a geomagnetic
storm using Bz as an example proxy. This prediction is then compared with a classical baseline. In the box titled ‘Baseline
comparison’, the four statistics refer to the max, min, mean, and standard deviation and the fractal dimension is the
Minkowski–Bouligand fractal dimension. Three block iterations of successive max-pooling (2 x 2), convolution (3 x 3), batch
normalization and ReLU activation is applied on the (128 x 128) pixel synced images. The convolutional layers are each
intialized using the Glorot uniform initializer, also called Xavier uniform initializer. After the flattened layer containing the
aggregate normalized features from all products come three fully connected layers. Batch normalization is first applied,
followed by two iterative blocks of successive linear activation and dropout. Linear activation consists of 128 activation units in
the first block and 32 units in the second. A dropout rate of 60% is used as a regularizer to reduce over-fitting. The final single
activation unit is given by the sigmoid function which assigns binary values to the preceding probabilities. It is at this stage
only that a single bias term is introduced. A binary cross entropy loss function is used together with a SGD optimizer with a
fixed learning rate of 0.01. A convergence is achieved within 100 epochs with early stopping enabled triggered by the
validation loss. Color scheme is same as in Fig. 2 with the addition of pink which denotes key stages in the CNN architecture.

F-corona is left in. This is a ∼ 25% reduction in the number of true events which may contribute to the drop in performance.316

For this same experiment, the GNB model has a TSS of 0.39 and MCC of 0.35 with the features: standard deviation of MDI, no317
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EIT 195, maximum of EIT 171, standard deviation of EIT 284, standard devitation of EIT 304, maximum of LASCO C2, and318

minimum of LASCO C3. Although the GNB outperforms the CNN in this example, we note that the CNN’s architecture and319

hyper-parameters have not been optimally selected. The GNB best-fit model with maximum for MDI, MB fractal dimension for320

EIT 195, minimum for EIT 171, mean for EIT 284, maximum for EIT 304, minimum for LASCO C2, and mean for LASCO C3321

with the F-corona in the LASCO images subtracted at the 5% threshold in Table 5 has a sensitivity or true positive rate (TPR)322

of 89% and the highest GNB specificity or true negative rate (TNR) of 89% making this a satisfactory model for predicting “all323

clear" scenarios for space weather applications. That this model has a TSS score of 0.78 but only an MCC score of 0.41 also324

re-affirms that a single metric is insufficient to fully describe a model’s performance. Comparing this GNB best-fit model with325

the F-corona subtracted with the GNB best-fit model at the 5% threshold with the F-corona left in, shows an added ∼ 15% in326

TSS and ∼ 24% in MCC performance compared to a TSS of 0.68 and MCC of 0.33. Subtracting the F-corona increases metric327

performance in the seven product experiments at the 5% to 15% thresholds.328

It is likely that a future extensive architectural study combined with a hyper-parameter sweep will produce a neural network329

that can outperform the GNB baseline. Capturing temporal evolution of magnetograms may hold the key for further predicative330

power. That there is information content in the SoHO images which does allow for forecasting is encouraging to prompt further331

investigations by the community. Since the code is intrinsically agnostic to the ground truth labels, a variety of space weather332

parameters can be examined.333

The machine learning-ready dataset and the software pipeline with an executable Jupyter notebook for ML experiments, such334

as illustrated by Fig. 4, presented in this paper pave the way toward establishing a community-wide practice that emphasizes335

reproducible research and benchmark datasets in space weather. An advantage of this pipeline is that it is highly modular thanks336

to its wrapping around both SunPy Fido and DRMS functionality. It enables a sophisticated user to add on other data providers337

and data products that are supported by the SunPy community and JSOC. The user can opt to generate FITS files locally or to338

work with the pre-generated HDF5 data cubes. Another advantage of the pipeline is that different down-sampling strategies339

may be better suited to different SoHO image products as observed from the features of the best fit GNB models in Table 5.340

Filters for missing data and planetary transits filter the data from these signal incursions which interfere with the system’s341

learning of the real data. Furthermore, there is a significant compute performance advantage over having to download each342

and every FITS file locally in order to determine its suitability versus querying the JSOC and SDAC databases on-the-fly to343

fetch suitable files and performing the image integrity assessment locally. The code also outputs clickable URLs to all products344

that have been discarded due to having missing data and separate identifiers of planetary transits. Furthermore, the scale of345

the observed region is kept as in the original images (no re-scaling). This should be appropriate for most machine learning346

applications. However, there might be some specialized applications, such as super-resolution, where the performance could be347

improved if the apparent size of the Sun is kept constant. Such re-scaling should then be applied downstream of our pipeline. If348

it is eventually found that there is not enough information contained in the images for forecasting space weather, this would still349

be an important step.350

6 Code and Data availability351

All of our Python code and Jupyter notebooks are open-source. Further details on virtual environment setup, code usage with352

sample benchmarks, and accompanying Jupyter notebooks for i. performing the CNN and GNB experiments on one, three, and353

all seven SoHO image products, with and without the F-corona, as described in this paper and ii. illustrating filters for planet354

and comet transits as well as cosmic ray and blob detection, may be obtained via (https://github.com/cshneider/355

soho-ml-data-ready). Software versions of required libraries are provided in the ‘Mission_Requirements’ text document356

and can be automatically installed with the specified conda environment using ‘conda install’ as in the instructions of the357

aforementioned GitHub repository. Interested parties are encouraged to get involved in the ongoing developments of the dataset.358
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